3 and 4 .Determinants and Matrices
hard

સુરેખ સમીકરણોની સંહતિનો ઉકેલ શ્રેણિકના ઉપયોગથી મેળવો : $x-y+2 z=7$ ;  $3 x+4 y-5 z=-5$ ; $2 x-y+3 z=12$

A

$x=2, y=1,z=3$

B

$x=-2, y=-1,z=3$

C

$x=-2, y=-1,z=3$

D

$x=2, y=1,z=-3$

Solution

The given system of equation can be written in the form of $A X=B$, where

$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and

$B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$

Now,

$|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$

Thus, $A$ is non-singular. Therefore, its inverse exists.

Now,

$A_{11}=7, A_{12}=-19, A_{13}=11$

$A_{11}=1, A_{22}=-1, A_{23}=-1$

$A_{31}=-3, A_{32}=11, A_{33}=7$

$\therefore A^{-1}=|A|^{(a d j A)}=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$

$\therefore X=A^{-1} B=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$

$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}49-5-36 \\ -133+5+132 \\ -77+5+84\end{array}\right]$

$=\frac{1}{4}\left[\begin{array}{l}8 \\ 4 \\ 12\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$

Hence, $x=2, y=1$ and $z=3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.